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Abstract
Biomass-burning emissions (BBE) profoundly affect climate and air quality. BBE have been
estimated using various methods, including satellite-based fire radiative power (FRP). However,
BBE estimates show very large variability and the accuracy of emissions estimation is poorly
understood due to the lack of good reference data. We evaluated fire emissions estimated using FRP
from the Advanced Baseline Imager (ABI) on GOES-R (Geostationary Operational Environmental
Satellites-R) by comparing with the Sentinel 5 Precursor TROPOspheric Monitoring Instrument
(TROPOMI) Carbon Monoxide (CO) over 41 wildfires across the United States during July
2018—October 2019. All the ABI FRP-based CO and TROPOMI CO emissions were significantly
correlated and showed a very good agreement with a coefficient of determination of 0.94 and an
accuracy of 13–18%. We further reported a CO emission coefficient of 29.92± 2.39 g MJ−1 based
on ABI FRP and TROPOMI CO, which can be used to directly estimate BBE from FRP observed
from satellites. Based on the CO emission coefficient and ABI FRP, we finally estimated a monthly
mean CO of 596 Gg across the Conterminous United States for June—September 2018.

1. Introduction

Global fires emit a very large amount of trace
gases and aerosols that significantly influence climate
(Tosca et al 2013) and degrade air quality (Johnston
et al 2012). Biomass-Burning Emissions (BBE) have
been estimated conventionally using knowledge of
burned area, fuel loads, combustion coefficient, and
emission factors since the 1980s (Seiler and Crutzen
1980, van der Werf et al 2017). Yet large uncertain-
ties in these parameters limit the accuracy of emis-
sions estimation (Randerson et al 2012). For instance,
burned area from MODIS (Moderate Resolution
Imaging Spectroradiometer), which has been widely
used in conventional emission inventories, is under-
estimated by up to 80% in Africa compared with the
Landsat-8 and Sentinel-2 based burned area (Roteta
et al 2019, Roy et al 2019). BBE have also been estim-
ated using inverse modeling by constraining chemical
transport models (CTMs) with satellite observations

of certain emissions species [e.g. carbon monoxide
(CO) from Measurements Of Pollution In The Tro-
posphere (MOPITT)] (Heald et al 2004, Shindell et al
2006, Duncan et al 2007, Jones et al 2009, Kopacz et
al 2010, Jiang et al 2017). The inverse modeling and
CTMs involve the configuration of many physical,
chemical, and meteorological variables and generally
make assumptions of biases and uncertainties in these
variables (Shindell et al 2006, Duncan et al 2007).
Because different assumptions could lead to signific-
ant systematic errors of inverse models (Heald et al
2004, Shindell et al 2006), the accuracy of BBE estim-
ation could be influenced by >20% globally (Jiang et
al 2011, 2013) and >80% regionally (Jiang et al 2013).

Fire radiative power (FRP), the instantaneous
radiative energy emitted from fire, has been shown
to be a reliable method to estimate BBE. Lab
and small-scale field experiments have demonstrated
that FRP can be empirically related to biomass
combustion rate via combustion factor (Wooster

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ab9d3a
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab9d3a&domain=pdf&date_stamp=2020-08-24
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4267-089X
https://orcid.org/0000-0001-8456-0547
mailto:fangjun.li@sdstate.edu


Environ. Res. Lett. 15 (2020) 094049 F Li et al

et al 2005, Freeborn et al 2008) and smoke emis-
sions rate via emission coefficient (Ichoku and Kauf-
man 2005, Freeborn et al 2008, Ichoku et al 2008),
which has been further confirmed in landscape wild-
fires (Kremens et al 2012, Li et al 2018, Mota and
Wooster 2018, Lu et al 2019). These empirical rela-
tionships enable direct calculation of the amount of
consumed biomass or emitted emissions during a
fire event using temporally integrated FRP (termed
fire radiative energy or FRE) observed from satel-
lites. Although satellite-based FRP has been increas-
ingly used to estimate regional-to-global fire emis-
sions in the past decade (Vermote et al 2009, Kaiser
et al 2012, Zhang et al 2012, Ichoku and Ellison 2014,
Darmenov and da Silva 2015, Roberts et al 2015,
Mota and Wooster 2018, Li et al 2019), the paramet-
ers that convert FRP to BBE differ significantly among
different studies and the widely used FRP observa-
tions from polar-orbiting sensors (e.g. MODIS) are
not able to characterize the diurnal variation of fires
that is a crucial element of computing BBE. As a res-
ult, BBE estimates in different products vary by a
factor of up to 10 (Zhang et al 2014a, Li et al 2019,
Carter et al 2020). The accuracy of BBE is usually
assessed by applying BBE to predict aerosol optical
depth (AOD) using CTMs and then comparing the
model predictedAODwith independent observations
such as ground-based sunphotometer measurements
or satellite-derived AOD (Zhang et al 2014a, Carter et
al 2020). Similarly, BBE estimates are also evaluated
using trace gases such as CO or carbon oxide (CO2)
from other independent observations (Pechony et al
2013, Huijnen et al 2016, Heymann et al 2017, Dekker
et al 2019). However, this evaluation approach is sig-
nificantly limited by uncertainties in the model pre-
diction of AOD (Curci et al 2015, Das et al 2017) and
concentrations of trace gases (Jiang et al 2011, 2013).
Therefore, full validation of the FRP-based BBE is
critical but remains challenging. This is primarily due
to the lack of high-quality measurements of fire emis-
sions as a reference on a large scale.

Here we propose a new approach to evaluate the
FRP-based BBE and derive smoke emission coeffi-
cient using observations at relatively fine spatiotem-
poral resolutions from two new satellite instruments:
the Advanced Baseline Imager (ABI) on the latest
GOES-R (Geostationary Operational Environmental
Satellites—R Series) and the TROPOspheric Monitor
Instrument (TROPOMI) on the Copernicus Sentinel
5 Precursor (Sentinel-5P). Specifically, we selected
41 wildfires with isolated fresh smoke plumes across
the Conterminous United States (CONUS) during
July 2018—October 2019. The FRE and BBE for each
wildfire were calculated from the 2-km ABI obser-
vations every 5 min and the total mass of fire CO
emissions was directly obtained from the 7-km TRO-
POMI CO data. Then, the ABI FRP-based BBE was
evaluated using TROPOMI CO and the CO emission
coefficient was further derived based on TROPOMI

CO and ABI FRE. Finally, the derived CO emission
coefficient and ABI FRP were used to estimate the
CO emissions across the CONUS, which were com-
pared with three satellite active fire data based BBE
inventories: the Fire Inventory from NCAR (FINN),
the Global Fire Assimilation System (GFAS), and the
Quick Fire Emissions Dataset (QFED).

2. Data

2.1. GOES-16 ABI FRP
The GOES-R ABI detects fires at a nominal spatial
resolution of 2 km (at nadir). GOES-16, the first
GOES-R satellite positioned at 75.2◦ W, has been
operationally running since December 2017. GOES-
16 ABI scans the CONUS every 5 min with a pixel
area increasing from 4.8–16.8 km2 as satellite view
zenith angle (VZA) varies from 29–72◦. GOES-16
ABI detects fires using the 3.9-µmand 11.2-µmbands
and provides for each fire pixel the detection time,
geolocation, fire temperature, fire area, FRP (MW
per pixel), and fire mask quality flag (Schmidt et al
2013). FRP is calculated using radiances of a fire pixel
and its ambient background non-fire pixels in the
3.9-µm band (Schmidt et al 2013). The fire detec-
tion performance of GOES-16 ABI has been eval-
uated using the 30-m Landsat-8 and 375-m VIIRS
(the Visible Infrared Imaging Radiometer Suite) act-
ive fire data and ground fire records (Hall et al 2019,
Li et al 2020), which shows that GOES-16 ABI is able
to confidently detect fires with FRP >34.5 MW (Li
et al 2020). Compared with the 750-m VIIRS FRP,
GOES-16 ABI FRP is relatively larger in individual
fires but generally comparable at a regional scale
across the southeastern CONUS (Li et al 2020). This
study obtained GOES-16 ABI active fire data during
July 2018—October 2019 from NOAA Comprehens-
ive Large Array-data Stewardship System (CLASS)
(https://www.avl.class.noaa.gov/; last accessed on 3
April 2020).

2.2. Sentinel-5P TROPOMI CO and aerosol index
Sentinel-5P TROPOMI observes global CO at a nom-
inal spatial resolution of 7 km. Sentinel-5P crosses
the equator at∼13:35. TROPOMI senses earth reflec-
ted radiances over a scan angle range of ±54◦ with a
swathwidth of∼2600 km (Veefkind et al 2012). TRO-
POMI CO is retrieved using radiances in the short-
wave infrared bands (SWIR, 2305–2385 nm) based
on the Shortwave Infrared CO Retrieval (SICOR)
algorithm (Vidot et al 2012, Landgraf et al 2016). The
ground pixel size of SWIR bands is generally con-
sistent (7 km) in the along-track direction but var-
ies from 7 km at nadir to 34 km at the scan edge in
the across-track direction (Veefkind et al 2012). The
7-km TROPOMI Level 2 CO product provides for
each pixel observation time, coordinates (longitude
and latitude), satellite VZA, solar zenith angle, CO
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total column density (mol m−2), and retrieval preci-
sion. The vertical sensitivity of the CO total column
density retrievals depends on the total column aver-
aging kernels that are sensitive to clouds (Borsdorff
et al 2018a). The averaging kernel of the CO total
column density across the globe in clear-sky condi-
tions has been demonstrated to be close to 1.0 at all
altitudes, which suggests that the CO total column
retrievals represent the true CO total columns very
well (Borsdorff et al 2018a). The validation also shows
that TROPOMI CO data agree with ground-based
CO observations and model-simulated CO data well
(Borsdorff et al 2018b, 2018c).

The TROPOMI sensor also senses aerosols using
the ultraviolet bands (UV). The ground pixel size
of TROPOMI UV bands is 7 km in the along-
track direction and varies from 3.5 km at nadir
to 15 km at the scan edge in the cross-track dir-
ection, which is ∼2 times finer than the SWIR
bands (Veefkind et al 2012). The TROPOMI Level
2 aerosol index (AI) product calculates AI based
on the 354/388 nm and 340/380 nm pair bands
(Apituley et al 2018). A positive AI indicates the
presence of absorbing aerosols (i.e. smoke from
fires, and volcanic ash, and dust). Thus, this study
obtained the TROPOMI Level 2 CO and AI products
for the period from July 2018–October 2019 from
the Copernicus Sentinel-5P pre-operations data hub
(https://s5phub.copernicus.eu/; last accessed on 3
April 2020).

2.3. Terra MODIS and S-NPP VIIRS true-color
imageries
The true-color (RGB) images from Terra MODIS
and VIIRS onboard S-NPP (the Suomi National
Polar-Orbiting Partnership) are obtained to
identify visually interpretable fresh smoke plumes.
The daily global true-color composites based
on MODIS and VIIRS surface reflectance are
available on the NASA (National Aeronaut-
ics and Space Administration) Worldview tool
(https://worldview.earthdata.nasa.gov/).

2.4. Three BBE inventories
The FINN, GFAS, and QFED emissions inventories
provide daily global fire emissions, including CO,
based on the 1-km MODIS active fire data (Wied-
inmyer et al 2011, Kaiser et al 2012, Darmenov
and da Silva 2015). The FINN inventory estimates
emissions at the fire pixel level using the conven-
tional bottom-up method, with the parameters-
burned area and fuel consumption calculated in
each MODIS fire detection (Wiedinmyer et al 2011).
The GFAS calculates emissions using MODIS FRP
and the land cover specific FRE combustion factors
that are derived by relating MODIS FRP to the
dry matter combustion ratio from the Global Fire
Emission Database (GFED3.1) (Kaiser et al 2012).
The QFED estimates emissions using MODIS FRP

and emission coefficients that are derived in two
steps: first obtain initial factors by relating MODIS
FRP to GFED emissions in four biomes, and then
adjust the initial factors by comparing the model-
simulated AOD with MODIS AOD (Darmenov and
da Silva 2015). This study obtained the FINN v1.5
(http://bai.acom.ucar.edu/Data/fire/; last accessed
on 18 May 2020), the GFAS v1.2 (https://apps.
ecmwf.int/datasets/data/cams-gfas/; last accessed on
18 May 2020), and the QFED v2.5r1 (https://portal.
nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED
/v2.5r1/0.1/; last accessed on 18 May 2020) emissions
data for the period from June to September 2018.

3. Methods

3.1. Selection of fire events with fresh smoke
plumes
Fire events with fresh smoke plumes were selected
based on active fire data from GOES-16 ABI and nat-
ural color imageries from both Terra MODIS and
S-NPP VIIRS. Specifically, the ABI fire detections
with valid FRP were first used to locate potential fire
events. Then for each fire event the VIIRS natural
color reflectance composite was employed to exam-
ine if the fire released any visually interpretable smoke
plumes that contrast sharply with background and
are not contaminated by clouds and smoke from
other fire events. Meanwhile, Terra MODIS natural
color reflectance was used to determine the age of
smoke plumes. In this study, we define that a smoke
plume is fresh if it is released within a few hours (i.e.,
3 h) of TROPOMI overpass. Because Terra MODIS
overpasses (10:30) the same area ∼3 h earlier than
S-NPP VIIRS (13:30) and Sentinel-5P TROPOMI
(13:35), a fire event is selected if the Terra MODIS
reflectance composite shows no smoke plumes (or
smoke with very limited size) associated with the
fire but VIIRS reflectance shows very clear smoke
plumes. Figures 1(a)–(f) shows the selection process
of two fires in northern Colorado on 22 Septem-
ber 2018, where the associated two smoke plumes
released after Terra MODIS overpass were observed
by S-NPP VIIRS and further confirmed by ABI active
fire detections and TROPOMI aerosol index data.

The selected fire events were further refined using
TROPOMI CO. During data exploration, we found
that the TROPOMI Level 2 CO product could fail
to provide valid CO retrievals for a few smoke pixels
close to fire fronts over very large and intense fires.
Thus, any selected fires with invalid CO observa-
tions were excluded. As a result, a total of 41 wild-
fires were finally extracted and they are mainly forest
fires (figure 1(g)). For each selected fire, TROPOMI
AI data were used to discriminate smoke plumes
from the background, and CO observations inside
the boundaries of a smoke plume were extracted
as smoke CO (figures 1(e) and (f)). The smoke
plume boundaries were then expanded outward
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Figure 1. Selection of fire events with fresh smoke plumes. (a–d) illustrate an example of selecting two fires occurred at northern
Colorado on 22 September 2018, and (g) shows the spatial distribution of the selected 41 fires across the CONUS during the
period from July 2018 to October 2019. (a) Terra MODIS true-color composite observed at 10:30. (b) Two fire events confirmed
by ABI active fire detections (red dots delineated by cyan polygons) overlain on S-NPP VIIRS true-color composite (observed at
13:30). (c–d) Aerosol index (based on 380/340 nm pair) and CO total column over the same region as in (a–b) observed by
TROPOMI at 13:35. (e–f) Pixels of TROPOMI aerosol index and CO are represented by points at their centers for manually
delineating smoke and non-smoke background pixels, which use the same legend as in (c–d), with the smoke plumes and
non-smoke background delineated by red and blue polygons, respectively.
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by a distance of at least three CO observations
(∼21 km= 7 km× 3 pixels), and theCOobservations
located at the region between smoke plume bound-
aries and the expanded boundaries were extracted as
the background non-smoke CO (figure 1(d)). As the
background pixels were not contaminated by clouds
or smoke from other fires, the CO total column
retrievals in the clear-sky observation conditions are
able to well represent the true CO total columns
(Borsdorff et al 2018a). Because the TROPOMI Level
2 CO data measure vertically integrated CO total
column above land/water surface, TROPOMI CO
over either smoke or background pixels also contains
CO from other sources, including oxidation from
methane and biogenic volatile organic compounds
(VOCs), etc.

3.2. Comparison of the ABI FRP-based COwith
TROPOMI CO
The total mass of fire smoke CO emissions was cal-
culated using TROPOMI CO observations for each
of the selected 41 fires. Because smoke plumes of the
selected fires were just released within a few hours
of the TROPOMI observation time, we assume that
oxidation of the CO emissions during such a short
period is negligible because atmospheric CO has a
lifetime of about two months at middle latitudes
(Khalil and Rasmussen 1990). Following the method
used by (Heymann et al 2017), for each selected fire
we first calculated background CO density by aver-
aging the CO total column density of all the extrac-
ted non-smoke background CO pixels to account for
non-fire contributions to the observed CO. Then the
total mass of the fire-released CO emissions is calcu-
lated using TROPOMI CO observations as:

COt =
∑n

i=1

[(
ρi
sm−ρbg

)
×Ai×M

]
(1)

where COt is the fire-released CO total mass (g)
observed by TROPOMI, n is the number of TRO-
POMI CO pixels inside the associated smoke plume
boundaries for a given fire, ρi

sm is the observed
CO total column density (mole m−2) of the ith
TROPOMI smoke CO pixel, ρbg is the mean CO
total column density (mole m−2) of the non-smoke
background pixels, Ai is pixel area (m2) of the ith
smoke CO pixel, and M is CO molecular mass
(28.01 g mol−1).

To examine the enhancement of CO over each fire
smoke plume against the non-smoke background, we
also calculated the dry-air CO total column mixing
ratio (in units of parts per billion volume, abbreviated
as ppbv) based on the TROPOMI CO total column
density and the co-located surface pressure by follow-
ing themethod in Borsdorff et al (2018a). For the sake
of simplicity, the CO column mixing ratio is referred
to as the dry-air CO total column mixing ratio.

The total mass of the CO emissions was also cal-
culated based on 5-min FRP retrievals from GOES-
16 ABI using an FRE biomass combustion factor.
(Wooster et al 2005) derived an FRE biomass com-
bustion factor of 0.368 kg MJ−1 in a field experiment
that has been commonly used to estimate regional-to-
global biomass consumption and emissions (Zhang
et al 2012, Roberts et al 2015). (Li et al 2018) repor-
ted an FRE combustion factor of 0.320 kg MJ−1 for
the CONUS wildfires based on FRP from MODIS
and GOES and the Landsat-based biomass consump-
tion. For each selected fire, the total mass of the CO
emissions was calculated using these two combustion
factors separately:

COf = FRE×B× F (2)

where COf is FRP-based CO total mass (g), FRE is the
ABI FRP-based fire radiative energy (MJ),B is the FRE
biomass combustion factor, and F is the CO emission
factor (89 g kg−1 for temperate forests; Akagi et al
2011). By assuming that fire intensity is generally con-
sistent within 5 min, the total radiative energy FRE is
calculated using 5-min ABI FRP as:

FRE=
∑q

k=1
FREk =

∑q

k=1

ˆ t2

t1
FRPk (t)dt (3)

where, given a fire with a total number of q ABI
fire detections, FREk is the fire radiative energy (MJ)
observed at the kth ABI fire pixel during a burning
period from t1 to t2. t1 is set as the observing time
of the first valid GOES-16 ABI fire observation at the
kth fire pixel and t2 is the TROPOMI overpass time.
FRPk(t) is ABI FRP at observing time t (t ∈ (t1, t2)).

Then, the ABI FRP-based CO total mass estimates
were compared statistically with the observed TRO-
POMI CO total mass estimates over the selected 41
fires using the ordinary least squares (OLS) regres-
sion.

Finally, the CO emission coefficient that converts
FRP to the mass of the CO emissions was also derived
fromABI FRE and TROPOMICOobservations using
the following formula:

COt = FRE×Ce (4)

where COt is the fire-released CO total mass (g)
observed by TROPOMI, FRE is the ABI FRP-based
fire radiative energy (MJ), and Ce is CO emissions
coefficient (gMJ−1). TheCO emission coefficient was
statistically calculated from 41 fire events using the
OLS regression.

3.3. Comparison of the ABI FRP-based COwith the
FINN, GFAS, and QFED CO
The CO emissions across the CONUS were estim-
ated using ABI FRP and the derived CO emissions
coefficient (Ce) at a grid resolution of 0.25◦ for the
fourmonths from June to September 2018. The result
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Figure 2. The TROPOMI CO column mixing ratios of the smoke plumes (colored cycles) and the non-smoke background (black
squares) over the selected 41 fires. From left to right, fire samples are plotted along the longitude in the west-to-east direction,
with colored circles and black squares representing the mean CO column mixing ratios of the smoke plumes and the background,
respectively, and the error bars showing the CO column mixing ratio at percentiles 20% and 80% (error bars are not shown for a
few eastern CONUS fires where smoke CO pixels are few).

was compared with the CO emissions from the FINN,
GFAS, and QFED fire emissions inventories. The four
months from June to September cover the typical fire
season in the west CONUS where large wildfires are
usually widespread (Zhang et al 2014b, Balch et al
2017). Specifically, for each ABI fire pixel, the daily
FRE was first calculated by integrating the 5-min ABI
FRP and then applied to calculate the daily CO emis-
sions using the equation (4). The daily pixel-level CO
emissions were further aggregated in a 0.25◦ grid and
at an interval of one month. Finally, the ABI FRP-
based monthly CO emissions were compared with
the CO emissions from the FINN, GFAS, and QFED
inventories.

4. Results and discussion

4.1. TROPOMI CO over smoke plumes and
background
Smoke plumes show significantly higher CO concen-
tration than the non-smoke background (figure 2).
Over the selected 41 fires, the CO column mix-
ing ratio of smoke plumes on average was 47 ppbv
higher than that of the background, which repres-
ents a CO mixing ratio enhancement of 51%. The
largest enhancements of 164% (135 ppbv) and 261%
(190 ppbv) were seen over two fires in Idaho State.
The CO enhancements were in similar ranges to the
ground- and airborne-measured CO enhancement
over wildfires in the western CONUS and North
America boreal regions (Val Martín et al 2006, Ditas
et al 2018). The mean CO mixing ratio enhancement
was 79% in the western CONUS while it was 27%
in the eastern CONUS. The large difference is partly

due to the difference in the background CO between
the two regions. The mean background CO column
mixing ratio in the eastern CONUS (113 ppbv) is
approximately 138% of that in the western CONUS
(82 ppbv), which is consistent with the pattern based
on long-termMOPITTCOobservations (Deeter et al
2012, Jiang et al 2018). This is primarily attributed
to the much larger contributions from anthropo-
genic and biogenic CO sources in the eastern CONUS
(Hudman et al 2008, Jiang et al 2018).

4.2. The ABI FRP-based CO versus TROPOMI CO
The ABI FRP-based CO estimates agree well with the
TROPOMI CO estimates (figure 3). Over the selec-
ted 41 fires, the total mass of the CO emissions estim-
ated via the two FRE biomass combustion factors
(equation (2)) was 0.001–6.78 Gg and 0.001–5.90 Gg,
which has a similar magnitude to the TROPOMI CO
based total mass: 0.015–6.21 Gg. The ABI FRP-based
COwas significantly correlated to the observed TRO-
POMI CO (R2 = 0.94, p-value < 0.001). When an
FRE biomass combustion factor of 0.368 kgMJ−1 was
applied, the FRP-based CO was overall slightly lar-
ger than TROPOMI CO by up to 18% at a 95% con-
fidence interval, with an RMSE (root mean square
error) of 0.3. For some relatively small fires, the
FRP-based CO was smaller than TROPOMI CO,
as indicated by the small negative bias. Similarly,
the FRP-based CO via an FRE combustion factor
of 0.320 kg MJ−1 was overall slightly smaller than
TROPOMI CO by up to 13% at a 95% confidence
interval, with an RMSE of 0.3. Although the ABI
and TROPOMI sensors provide unprecedented spati-
otemporal resolution observations of fires and smoke
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Figure 3. Comparisons of the observed TROPOMI CO and the ABI FRP-based CO estimated using two FRE biomass combustion
factors: (a) 0.368 kg MJ−1 and (b) 0.320 kg MJ−1. The red solid and dash lines represent the best-fit model and 95% confidence
intervals, and the black solid line is 1:1 line.

emissions, the accuracy of the associated FRP and CO
data could influence CO estimates for individual fires.
However, the very good agreement between the ABI
FRP-based CO and TROPOMI CO estimates over the
41 fires across the CONUS confirms the robustness
of the FRP-based method for BBE estimation via FRE
biomass combustion factors. The small difference
(−13% – +18%) between the FRP-based CO and
TROPOMI CO suggests that for the CONUS forest
wildfires the uncertainty of the FRP-based BBE via the
two FRE combustion factors is limited within 18%.
This differs from the previous finding that BBE estim-
ated via FRE combustion factor are largely underes-
timated and an increase of BBE by a factor of several
times is needed to reduce the underestimation (Kaiser
et al 2012, Darmenov and da Silva 2015).

4.3. Comparison of CO emission coefficient with
other studies
Figure 4 shows a CO emission coefficient of
29.92 ± 2.39 g MJ−1 based on ABI FRE and TRO-
POMI CO over the selected 41 fires. The coefficient
of determination indicates that 94% of the variation
in CO could be explained by ABI FRE, which also
implies that the derived CO emission coefficient
can be used to calculate the CO emissions from FRP
without bias and with limited uncertainties.

CO emission coefficient has been derived in sev-
eral previous studies to directly estimate BBE using
satellite-based FRP. In the published literature, CO
emission coefficient has been derived directly by
correlating lab-measured rate of the CO emissions
to FRP (or mass of CO to FRE; Freeborn et al
2008) or indirectly inferring from the TPM (total
particulate matters) emission coefficient based on
the ratio of CO and TMP emission factors (Mota
and Wooster 2018). Our CO emission coefficient is
very close to the lab-based CO emission coefficient
(33.71 gMJ−1; Freeborn et al 2008). However, the CO

emission coefficient converted from theAOD-derived
TPM emission coefficient is much larger. (Mota and
Wooster 2018) reported a CO emission coefficient of
142 g MJ−1 based on MODIS AOD and FRP from
SEVIRI (Spinning Enhanced Visible and Infra-red
Imager) in open-canopy forest fires in Africa. Simil-
arly, (Ichoku and Ellison 2014) and (Lu et al 2019)
separately showed a TPM emissions coefficient of
40 g MJ−1 and 21.73 g MJ−1 for the CONUS forest
fires based onMODIS FRP and AODdata, which cor-
responds to a CO emission coefficient of 193 g MJ−1

and 105 g MJ−1. One potential issue in deriving
AOD-based CO emission coefficients is the uncer-
tainties of the smoke mass extinction coefficient that
converts AOD to TPM. The mass extinction coeffi-
cient varies between 2.22 and 7.6 m2 g−1 as smoke
ages, which has been discussed in (Mota andWooster
2018). Moreover, previous studies also showed that
the BBE estimated via the AOD-based coefficients is
larger than BBE estimates calculated via FRE biomass
combustion factor by a factor of several times (Zhang
et al 2014a, Li et al 2019, Carter et al 2020). As a res-
ult, it is reasonable to deduce that combiningABI FRE
andTROPOMICO could provide amuch reliable CO
emission coefficient.

4.4. The ABI FRP-based CO emissions across the
CONUS
Figure 5 shows the spatial patterns of the ABI FRP-
based monthly CO emissions across the CONUS
from June to September 2018. During this period,
fires occurred in most regions of the CONUS but
the fire-released CO emissions varied significantly
spatially. Fires in the western CONUS accounted
for 82%, 92%, 95%, and 93% of the monthly
total CO emissions across the CONUS in the four
months, respectively. In the same period, however,
fires in the eastern CONUS released a relatively very
limited amount of the CO emissions, which were
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Figure 4. The CO emission coefficient based on ABI FRE and TROPOMI CO. The red solid and dash lines are the best-fit model
and 95% confidence intervals.

Figure 5. The ABI FRP-based monthly CO emissions in a 0.25◦ grid across the CONUS from June to September 2018.

mainly contributed by fires across the southeast-
ern CONUS. This is consistent with the previous
finding that the majority portion of the CONUS
emissions is from fires across the western CONUS
during the summer months (Urbanski et al 2018,
Li et al 2019).

The ABI FRP-based CO emissions provide a good
reference for evaluating the CO emissions from the
existing fire emissions inventories. Figure 6 shows the
monthly total CO emissions based on ABI FRP and
from the FINN, GFAS, and QFED emissions invent-
ories across the CONUS. In the four months from
June to September, the ABI FRP-based monthly CO
emissions were 294 (±23) Gg, 702 (±56) Gg, 934
(±75) Gg, and 455 (±36) Gg, respectively. In com-
parisonwith the three inventories, the ABI FRP-based

monthly CO emissions on average were very similar
to the FINN and GFAS CO, with a mean difference of
less than 13%, but differed from the QFED CO by a
factor of approximately four. Although the mean of
the ABI FRP-based monthly CO emissions (596 Gg)
was comparable with that of the GFAS CO (670 Gg),
the ABI FRP-based CO and the FINN and QFED
CO peaked in August while the GFAS CO peaked
in September and was the smallest in August among
all the four CO datasets. Further, previously pub-
lished studies also found that the QFED emissions
were much larger than the other emissions inventor-
ies across the CONUS and other regions, with a dif-
ference of 2–6 times (Li et al 2019, Carter et al 2020,
Pan et al 2020). The large discrepancies aremost likely
associated with the fact that the QFED emissions are

8
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Figure 6.Monthly CO emissions based on the ABI FRP and from the FINN, GFAS, and QFED emissions inventories. The error
bars represent one standard deviation of the ABI FRP-based CO emissions.

significantly enlarged by theMODIS AODbased scal-
ing factors (Carter et al 2020).

Potential uncertainties in the ABI FRP-based CO
emissions estimates could arise from the omission
errors in the ABI fire detection and the application of
the single CO emission coefficient. First, the GOES-
16 ABI sensor could miss very small and/or cool
fires at large view angles in the northwestern CONUS
because of the decrease in pixel resolution although
its high temporal resolution significantly improves
the fire detection capability (Li et al 2020). Luck-
ily, the portion of small fires in the northwestern
CONUS is much smaller than that in the southeast-
ern CONUS (Randerson et al 2012) where the ABI
sensor has a fire detection capability comparable to
the VIIRS sensor (Li et al 2020). Thus, the uncer-
tainty of the ABI FRP-based CO due to the omission
errors of the ABI fire detections could be relatively
small. Second, the CO emissions across the CONUS
in this comparison were calculated using the single
CO emission coefficient that was derived based on
the TROPOMI CO over mostly forest fires (figure 4).
For other types of fires (e.g. agricultural burnings),
the CO emission coefficient could be different, which
could introduce certain uncertainties in the CO emis-
sions estimates. However, this effect could be lim-
ited in this comparison because fires, especially large
forest wildfires, in thewesternCONUS contributed to
the majority portion (82% in June and >90% in the
following three months) of the CO emissions across
the CONUS.

5. Conclusions

Accurate and timely estimation of BBE is crucial
for understanding the role of biomass burning in
the atmosphere and biosphere. Satellite-based FRP

provides an effective way to estimate fire emissions at
a regional-to-global scale. Because of the lack of direct
and good-quality observations of BBE, current BBE
estimates from satellite data are generally not fully val-
idated. This study proposed a new algorithm to make
a reliable and applicable evaluation of fire emissions
estimates, which is to select fresh fire events detec-
ted by TROPOMI. As a result, this study evaluated
the FRP-based method for fire emissions estimation
using the 7-km Sentinel-5P TROPOMI CO and 2-
km GOES-16 ABI FRP observations every 5 min over
41 fresh fires occurred during July 2018—October
2019 across the CONUS. The results show that smoke
plumes on average enhance CO emissions by 51%
compared with the non-smoke background over the
41 fires, and the ABI FRP-based CO estimates are sig-
nificantly correlated to the TROPOMI CO with an
overall difference of 13–18%. This result confirms
that fire emissions can be well estimated from the
FRE biomass combustion factors. Additionally, based
on ABI FRE and TROPOMI CO, this study reports
a CO emission coefficient of 29.92 ± 2.39 g MJ−1,
which is very close to the one derived in the lab exper-
iment. This coefficient, combined with ABI FRP, was
further used to estimate the CO emissions across
the CONUS during the 2018 summer months. The
ABI FRP-based CO emissions provide a direct ref-
erence for evaluating the existing BBE inventories,
which helps us understand the large discrepancies
among the existing BBE inventories. Mitigating the
uncertainty in BBE estimation could significantly
improve the predictions of air quality and radiat-
ive effect(Vongruang et al 2017, Carter et al 2020).
The algorithm proposed in this study is expected
to be expanded to other fire-prone regions where
high temporal resolution FRP observations from the
latest geostationary sensors (e.g. ABI, SEVIRI, and the
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Advanced Himawari Imager) are available. The high-
spatiotemporal-resolution observations of the fire-
released atmospheric pollutants from the advanced
instruments like the Geostationary Environment
Monitoring Spectrometer (GEMS; Kim et al 2020)
and the Tropospheric Emissions: Monitoring of Pol-
lution (TEMPO; Zoogman et al 2017) will make it
possible to examine the diurnal variation of emis-
sions coefficients, which could further improve the
accuracy of BBE estimation and advance our under-
standing of the effects of BBE on climate, weather and
environmental conditions, and human health.
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